Понятия со словосочетанием «теория групп»
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий...
Вычислительная теория групп — область науки на стыке математики и информатики, изучающая группы с помощью вычислительных машин. Она связана с проектированием, анализом алгоритмов и структур данных для вычисления различных характеристик (чаще всего — конечных) групп. Область интересна исследованием важных с различных точек зрения групп, данные о которых невозможно получить вычислениями вручную.
В этой статье приведены основные термины, используемые в теории групп. Курсив обозначает внутреннюю ссылку на данный глоссарий. В конце приводится таблица основных обозначений, применяемых в теории групп.
Подробнее: Глоссарий теории групп
Эмпирико-функционалистская группа теорий — это одна из основных групп теорий медиа, зародившаяся в США в первой половине XX века. Она изучает эффекты медиа и опирается в своей методологии на точные науки и эмпирическую социологию. Главной идеей данной группы теорий является идея воздействия медиа на индивида, отражающаяся в двух наиболее популярных парадигмах группы теорий: парадигме пропагандистской силы и парадигме ограниченных эффектов.
Лингвистическая группа теорий — это одна из основополагающих совокупностей теорий медиа, сущностной чертой которых является исследование медиа, коммуникаций (в частности массовых коммуникаций) через анализ текстов. Важно отметить, что в данном случае под текстом понимается не только письменный источник, но и любой другой носитель информации (например, аудиопроизведения или кинотексты). Является социально ориентированным подходом, поскольку знаковые системы предполагают конвенциональность существующему...
Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).
Связанные понятия
Дискретная дифференциальная геометрия — раздел математики, в котором исследуются дискретные аналоги объектов дифференциальной геометрии: вместо гладких кривых и поверхностей рассматриваются многоугольники, полигональные сетки и симплициальные комплексы.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Интерполяция линейных операторов — направление функционального анализа. рассматривающее банаховы пространства как элементы некоторой категории. Общая теория интерполяции линейных операторов была разработана, начиная с 1958 года, в работах С. Г. Крейна, Ж.-Л. Лионса, Ж. Петре. Имеет многочисленные приложения в теории рядов Фурье, в теории приближений, в теории уравнений в частных производных.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Теорема о замкнутом графике — важный результат функционального анализа, устанавливающая критерий ограниченности линейного оператора между банаховыми пространствами.
Алгебры
вершинных операторов впервые были введены Ричардом Борчердсом (англ.) в 1986 году. Имеет важное значение для теории струн, конформной теории поля (англ.) и для смежных областей физики. Аксиомы алгебры вершинных операторов — это формальная алгебраическая интерпретация того, что физики называют хиральной алгеброй.
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
Подробнее: Пространство (математика)
Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля.
Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами...
Алгебра Хопфа — ассоциативная алгебра над полем, имеющая единицу, и являющаяся также коассоциативной коалгеброй с коединицей и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа.
Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел. Выделяются два раздела теории колец: изучение коммутативных и некоммутативных колец.
Теория чисел, или высшая арифметика, — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Конформная теория поля это квантовая теория поля, которая является инвариантной относительно конформных преобразований. При размерности пространства равном двум может быть решена в точности.
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Векторные расслоения на алгебраических кривых можно изучать как голоморфные векторные расслоения на компактных римановых поверхностях, что является классическим подходом, или как локально свободные пучки на алгебраических кривых C в более общем, алгебраическом окружении (которое может, например, позволять особые точки).
Абелево многообразие — это проективное алгебраическое многообразие, являющееся алгебраической группой (это значит, что закон композиции задаётся регулярной функцией).
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения.
Теория интегрируемых систем — раздел математической физики, изучающий недиссипативные решения дифференциальных уравнений, в том числе уравнений в частных производных. Такие системы имеют соответствующие высшие симметрии.
Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью.
Прикладна́я матема́тика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и техники. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и исследование операций, моделирование сплошных сред (Механика сплошных сред), биоматематика и биоинформатика, теория информации, теория игр, теория вероятностей и статистика, финансовая математика и актуарные расчёты, криптография, а следовательно...
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Теорема Пикара — теорема о существовании и единственности решения обыкновенного дифференциального уравнения первого порядка.
Общая алгебра (также абстрактная алгебра, высшая алгебра) — раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, модули, решётки, а также отображения между такими структурами.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Граничные условия Дирихле первого рода — тип граничных условий, названный в честь немецкого математика П. Г. Дирихле. Условие Дирихле, применённое к обыкновенным дифференциальным уравнениям или к дифференциальным уравнениям в частных производных, определяет поведение системы на границе области. Задача о нахождении таких условий называется задачей Дирихле.
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов (точек, прямых, окружностей, многоугольников, тел с одинаковым диаметром, целочисленных решёток и т. п.) и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или...
Γ-сходимость (
Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных.
Теория чисел — это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем, попытки решения которых предпринимались математиками в течение десятков, а иногда даже сотен лет, но которые пока так и остаются открытыми. Ниже приведены некоторые из наиболее известных нерешённых проблем.
Неравенство Боголюбова (квантовая статистическая физика) - неравенство для фурье-образов статистических функций Грина в энергетическом представлении и корреляционных средних. Используется в теории ферромагнетизма, антиферромагнетизма, кристаллических структур для доказательства невозможности фазовых переходов в одно- и двумерных системах.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Геометрия Галуа (названа именем французского математика 19-го века Эвариста Галуа) — это раздел конечной геометрии, рассматривающий алгебраическую и аналитическую геометрию над конечными полями (или полями Галуа). В более узком смысле геометрию Галуа можно определить как проективное пространство над конечным полем.
Уравнение эйконала (от др.-греч. εἰκών — изображение) — нелинейное дифференциальное уравнение в частных производных, встречающееся в задачах распространения волн, когда волновое уравнение аппроксимируется с помощью квазиклассического приближения.
Интегра́л Юнга — обобщение понятия интеграла Римана и Дарбу, эквивалентное интегралу Лебега. Дано Юнгом в 1905 году. Основная идея Юнга состояла в расширении понятия интеграла Римана путём замены сегментов разбиения множествами и в допущении счетных разбиений.
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.